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•  Programs at Bates, Mainz, and Jefferson Lab that plan to measure the
strange electric and magnetic form factors depend on knowledge of the
strange axial form factor -- but that form factor has never been directly
measured!

•  Connections between, and review of, available data linked to the
strange axial form factor

•  How to combine elastic νp and ep data to get GA
s

•  Combine BNL E734 νp data and the HAPPEX ep data to get 2 distinct
solutions for the strange form factors at Q2 = 0.5 GeV2

•  E734 and G0 and FINeSSE

or
Δs:  There are things we know, and things we don’t know…



The strange axial form factor and Δs
During the early years of the “spin crisis” there was a great interest in Δs
because it was thought to be the “solution” to the problem of the missing
valence quark spin contribution to the proton spin.

By the mid 1990’s it was clear that the complete “solution” involved
also the gluon and orbital angular momentum sectors, and the focus of
the spin community began to shift in those directions.  The inclusive
polarized DIS experiments produced useful (but assumption-laden)
estimates of Δs.
The two major projects that could have measured Δs directly in neutrino
scattering during this time period, the BNL E734 experiment and the
LANL LSND experiment, failed to do so conclusively.
In the meantime, a program of parity-violating eN experiments arose,
with the goal of measuring the strange electromagnetic form factors of
the nucleon.  This cannot be done without knowing the strange axial
form factor too, but since Δs had been “measured” in polarized DIS they
wisely proceeded with their plans.



Data on Δs from Inclusive Polarized Deep Inelastic Scattering

Inclusive scattering of polarized leptons from polarized nucleon
targets measures the spin-dependent nucleon structure function g1:
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∑              q(x) = p.d.f.
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q
∑             Δq(x) =  polarized p.d.f.

In the quark-parton model, inclusive scattering of leptons from
nucleon targets measures the nucleon structure function F1:

The first moment of the polarized p.d.f. is the contribution of
that flavor to the nucleon spin:
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Δq ≡ Δq(x)
0

1

∫ dx

The Δq are also called the “axial charges” because they are
related to the matrix elements of the axial current:
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Δq∝q γµγ 5q



QCD:  Q2-dependence and radiative corrections

In leading order QCD, these functions take on a scale dependence:
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In NLO QCD, there are significant radiative corrections and the
relation between g1 and the Δq is more complex.

The discussion here will be limited to the leading-order QCD
analysis for two reasons:

• Including the NLO terms does not change the answer for Δs
very much.

• The problems I will point out exist at all orders, because they
are problems coming from the data itself.



The classic LO QCD analysis of inclusive polarized DIS data
[SMC:  Adeva et al.,  Phys. Lett. B 412 (1997) 414]

*Dogs walk around in a circle twice before laying down….

2)  Extrapolate the measured values to x =1 assuming a constant
value of the experimental asymmetry.  (This step contributes little
to the area of g1 and also very little to the uncertainty and I don’t
discuss it again.)
3)  Extrapolate the measured values to x = 0.  It is unclear how to do
this, so two approaches are used*.  One is to assume g1 = constant for
x < 0.003 --- this is called the “Regge assumption” for not very good
reasons.  The other approach is to simply use the QCD fit from step 1,
extended to x = 0.

1)  Take measured values of g1(x, Q2), covering ranges of x and Q2 of
0.003 < x < 0.70 and 1.3 < Q2 < 58.0, and use QCD to evolve all data
to a common value of Q2 = 10 GeV2.  The evolution procedure leads
to a fit function for g1 in the measured x-region.



Completing the analysis, using both fits:

4) Integrate g1 over 0 < x < 1:

This integral relates the three axial charges:
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0.130 ± 0.017 QCD fit
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5)  Assuming SU(3)f is a valid symmetry of the baryon octet, and
using hyperon beta decay data, we can determine two other
relations between the three axial charges:
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Δu −Δd =
gA
gV

= F + D           and           Δu + Δd − 2Δs = 3F −D

where     gA
gV

=1.2601± 0.0025     and     F
D

= 0.575 ± 0.016   [in 1997]

6)  Solve for the axial charges!
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"Regge" QCD fit
Δu 0.84 ± 0.06 0.80 ± 0.06
Δd −0.42 ± 0.06 −0.46 ± 0.06
Δs −0.08 ± 0.06 −0.12 ± 0.06



Data on Δs from Semi-Inclusive Polarized Deep Inelastic Scattering

In semi-inclusive DIS, a leading hadron is observed in coincidence
with the scattered lepton.  This allows a statistical identification of
the struck quark, and hence a measurement of the x-dependence of
the individual Δq(x) distribution functions.  (Inclusive scattering
only measures the total structure function g1(x).)

The HERMES experiment on the HERA ring at DESY was
especially designed to make this measurement.

HERMES measured double-spin asymmetries in the production of
charged hadrons in polarized deep-inelastic scattering of positrons
from polarized targets:  Specifically, the asymmetry in the
production of charged pions on targets of hydrogen and deuterium,
and of charged kaons in scattering from deuterium.



HERMES measurement of Δq(x)

There is no assumption of SU(3)f symmetry in their analysis.  They
extract the following quark polarization distributions, over the range
0.023 < x < 0.30 :
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s
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They integrate the strange distribution to obtain:
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"Δs" = Δs(x)dx
x= 0.023

0.30

∫ = +0.03± 0.03(stat) ± 0.01(sys)

This would only be the true Δs if the integral was over 0 ≤ x ≤1.[ ]
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"Δs" = Δs(x)dx
x= 0.023

0.30

∫

= +0.03± 0.03(stat)± 0.01(sys)

HERMES Results: quark helicity distributions
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 Q2 = 2.5 GeV2

0.023 < x < 0.30

PRL 92 (2004) 012005



So, where did the negative Δs go?

The HERMES article [PRL 92 (2004) 012005] contains this very
interesting remark:

“The strange sea distribution was previously found to be
negatively polarized in the analysis of only inclusive data
assuming SU(3) symmetry applied to hyperon beta decay data.
However, the first moments from such analyses evaluated over
the measured x range                                         are typically not in
disagreement with the partial moment of the density extracted
here:                                                      .”
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Δs + Δs ( ) 2 ≡ Δs(x)dx
0.023

0.3
∫
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Δs = +0.03± 0.03(stat)± 0.01(sys)

Translation:  If both analyses are correct, then all of the
negative contribution to Δs from the SU(3)f analysis of
inclusive DIS data came from lower values of x, that is from
x < 0.023.



Low-x strange quark polarization
The HERMES result suggests that the strange quark helicity
distribution Δs(x) ~ 0 for x > 0.023.

At the same time, we have our result from the SU(3)f analysis of
hyperon beta decay and inclusive polarized DIS data, including an
extrapolation to x = 0:
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Δs = Δs(x)dx
0

1
∫ ≈ −0.10 ± 0.06

If these two results are both true, then the average value of Δs(x) in
the range x < 0.023 must be ~ −5.  That’s not impossible, as s(x) is
~20-300 in the range x~10-2 to 10-3 (CTEQ6).  But we would need
a mechanism that would “turn on” the strange quark polarization
suddenly at these low x values.



Other explanations and considerations

• SU(3)f symmetry is not valid.  A few years ago, when experimental
data was sparse, we needed SU(3)f symmetry to extend the reach of
the analysis.   But with so much data available now, we don’t need to
use SU(3)f as a crutch anymore.

• The extrapolations to x = 0 are not valid.  There is no way to prove
or disprove this except via additional experimental measurements.

A direct measurement of Δs would certainly serve to clarify these issues!
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The effective axial form factor seen in
parity-violating eN scattering
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                            GA
e = −GA

CC +GA
s +GA

ewm

GA
CC =

gA
1+Q2 MA

2( )
2     

gA =1.267
MA =1.026 GeV

GA
s (Q2 = 0) = Δs

                  = −0.10 ± 0.06 
[estimate from DIS data]

GA
ewm Contains electroweak mixing contributions ---- must be

calculated…

Charged-current
axial form factor;
dipole Q2 behavior

Strange quark
axial form factor;

unknown Q2 behavior



Isoscaler and isovector components of GA
e

€ 

The terms in GA
ewm, being corrections, are either additive terms or are proportional 

to GA
CCand GA

s .  It is customary to rewrite GA
e = −GA

CC +GA
s +GA

ewm in terms of isoscaler 
and isovector components :

                   GA
e =GA

e T = 0( ) +GA
e T =1( )

          with     GA
e T = 0( ) =GA

s + RA
T= 0

          and      GA
e T =1( ) = −GA

CC 1+ RA
T=1( )

The correction factors RA
T= 0 and RA

T=1 have been calculated at Q2 = 0 in the context of 
heavy - baryon chiral perturbation theory by Zhu et al., Phys. Rev. D62 (2000) 033008.
                  RA

T= 0 = 0.03 ± 0.05            RA
T=1 = −0.23 ± 0.24



The SAMPLE Result
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SAMPLE measured PV asymmetry in backward angle elastic r e N scattering at Q2 = 0.091 GeV2,
using both hydrogen and deuterium targets :
     AH = −5.61± 0.67 ± 0.88 ppm    (Phys. Lett. B583 (2004) 79)
     AD = −7.77 ± 0.73± 0.62 ppm    (Phys. Rev. Lett. 92 (2004) 102003)

€ 

Assuming :   GA
s ≅ Δs = −0.1± 0.1 (E. Beise, priv. comm.),

                     GE
s = 0 (this must be nearly zero near Q2 = 0), and

                     the correction factor  RA
T= 0 = 0.03± 0.05 (Zhu et al.),

then these two assymmetries are related to GM
s  and GA

e T =1( ) as follows :
     AH = −5.56 + 3.37GM

s +1.54GA
e T =1( ) ppm

     AD = −7.06 + 0.77GM
s +1.66GA

e T =1( ) ppm

€ 

SAMPLE reports a measurement of GM
s  and GA

e T =1( ) :
         GM

s = 0.23± 0.36 ± 0.40       GA
e T =1( ) = −0.53 ± 0.57 ± 0.50   (E. Beise, priv. comm.)

The reason for separating out the GA
e T =1( ) term was to test the more difficult aspect of the 

Zhu et al. calculation, namely the isovector correction factor :    RA
T=1 = −0.23 ± 0.24.  Using this 

value, Zhu et al. are able to predict  GA
e T =1( ) = −0.83± 0.26, in agreement with the experiment.



If one believes the calculation of
Zhu et al., one may use instead
their value of             with the
experimental value of AH and
extract a value for      :
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GA
e T =1( )

€ 

GM
s

€ 

GM
s Q2 = 0.1 GeV2( ) = 0.37 ± 0.20 ± 0.26 ± 0.07

[SAMPLE :   Phys. Lett. B583 (2004) 79]

€ 

But if you believe the calculation of the 
correction factors, why not discard the 
assumption of GA

s = −0.1± 0.1?
Instead, why not use the forward - angle hydrogen data of PVA4 
and the backward - angle data of SAMPLE to extract GA

s  along with GM
s  ?

Making use of the theory…



Combining SAMPLE and PVA4 at Q2 = 0.1 GeV2
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Write the hydrogen asymmetries as linear combinations of GE
s  and GM

s  and GA
s :
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Then
        APVA4

p = −1.77 + 9.24GE
s + 0.883GM

s + 0.226GA
s  ppm     Q2 = 0.1 GeV2, θe = 35o( )

        ASAMPLE
p = −6.85 + 2.02GE

s + 3.47GM
s +1.59GA

s  ppm     Q2 = 0.1 GeV2, θe =145o( )



€ 

APVA4
p = −1.77 + 9.24GE

s + 0.883GM
s + 0.226GA

s  ppm     Q2 = 0.1 GeV2, θe = 35o( )
ASAMPLE
p = −6.85 + 2.02GE

s + 3.47GM
s +1.59GA

s  ppm     Q2 = 0.1 GeV2, θe =145o( )
I’ll continue to assume that the strange electric form factor is zero at
this low Q2, but note that even a small value would play a role!
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APVA4
p = −1.77 + 0.883GM

s + 0.226GA
s  ppm  = −1.40 ± 0.40

ASAMPLE
p = −6.85 + 3.47GM

s +1.59GA
s  ppm   = −5.61±1.11

€ 

Note also that AA
p < AM

p  in both expressions.
Therefore this is a really bad way to find GA

s .€ 

Note that the determinant of this linear system is small:
           0.883×1.59 − 0.226 × 3.47 = 0.620
Therefore this is not a good way to find GM

s  and GA
s .



At any rate, the answer is

€ 

GM
s = 0.4 ±1.0       GA

s = −0.2 ± 2.6
               Q2 = 0.1 GeV2

Can’t measure Δs in PV eN experiments.
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APVA4
p

€ 

ASAMPLE
p



The HAPPEX Result

  

€ 

HAPPEX measured forward PV r e N asymmetry at Q2 = 0.477 GeV2.
Their result is a linear combination of GE

s  and GM
s :

          GE
s + 0.392GM

s = 0.025 ± 0.020 ± 0.014
This contains a contribution from GA

e  as well, so there may be some 
additional uncertainty in the result.  
But their sensitivity to GA

e  is about 4% of that to GE
s  and GM

s ,  because
the measurement is at a very forward electron scattering angle.  (No 
axial contribution at θe = 0.) So even a large uncertainty in GA

e  at this Q2 
would not pose a significant problem in the interpretation of this result.

Forward-angle PV eN asymmetry measurements establish a
relationship between the strange electric and magnetic form factors.



The BNL E734 Experiment

• performed in mid-1980’s

• measured neutrino- and antineutrino-proton elastic scattering

• used wide band neutrino and anti-neutrino beams of <Eν>=1.25 GeV

• covered the range 0.45 < Q2 < 1.05 GeV2

• large liquid-scintillator target-detector system

• still the only elastic neutrino-proton cross section data available

• previous attempts (Garvey, Louis & White; Alberico et al.) to extract
the strange quark axial form factor from this data were not successful;
assumed dipole Q2-dependence for GA

s;  this assumption is no longer
necessary, as additional experimental information are available now (i.e.
HAPPEX) and more are on the way.



0.0591 ± 0.01020.137 ± 0.0230.50
0.0101 ± 0.00270.0205 ± 0.00621.05
0.0108 ± 0.00220.0294 ± 0.00740.95
0.0129 ± 0.00220.0447 ± 0.00920.85
0.0184 ± 0.00270.0657 ± 0.00980.75
0.0283 ± 0.00370.0803 ± 0.01200.65
0.0426 ± 0.00620.109 ± 0.0170.55
0.0756 ± 0.01640.165 ± 0.0330.45

dσ/dQ2(νp)
(fm/GeV)2

dσ/dQ2(νp)
(fm/GeV)2

Q2

(GeV)2

E734 Results Uncertainties shown are total (stat and sys).
Last row averages the 0.45 and 0.55 GeV2 points
together.



Elastic neutrino-proton cross sections
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Difference of Cross Sections
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Δ ≡
dσ
dQ2 νp→νp( ) − dσ
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Relates GM
s and GA

s.



Sum of Cross Sections
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Used Δ to eliminate the dependence on the axial form factors.
F1

Z and F2
Z only contain electric and magnetic form factors.

This can be written as a fourth order polynomial in GE
s and GM

s.



Two Useful Relations
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Δ ≡
dσ
dQ2 νp→νp( ) − dσ

dQ2 νp→νp( )
is a function only of GM

s  and GA
s .

Σ ≡
dσ
dQ2 νp→νp( ) +

dσ
dQ2 νp→νp( )

is a function only of GM
s  and GE

s .

Need at least one more relation to extract the three strange form factors.
That’s where the PV ep measurements come in.



What you learn from the Δ expression
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aGM
s −GA

sGM
s + bGA

s + c = 0

a =GA
CC

b = 1− 4sin2θW( )GM
p −GM

n

c =
16π
W

Eν
2

Q2
Δ
GF
2 − ab

• single-valued function relating strange axial and magnetic form factors

• asymptotes correspond to the fact that if Δ is not zero, then neither GA
Z

nor (F1
Z + F2

Z) can be zero

• asymptotes rule out a range of valuesrule out a range of values for the strange axial and
magnetic form factors



What you learn from the Σ expression

Q2 = 0.5 GeV2

• multi-valued function of strange electric and magnetic form factors

• At this Q2:

 rules out |GE
s|  > ∼ 0.6

 rules out moderate positive values of GM
s



Combining E734 and HAPPEX

There are two solutions!

1

2Q2 = 0.5 GeV2



Solution 1

−0.09±0.05GA
s

0.00±0.21GM
s

0.02±0.09GE 
s



0.28±0.10GA
s

−0.87±0.11GM
s

0.37±0.04GE
sSolution 2



The Two Solutions

0.28±0.10−0.09±0.05GA
s

−0.87±0.110.00±0.21GM
s

0.37±0.040.02±0.09GE
s

Solution 2Solution 1

Q2 = 0.5 GeV2

Three reasons to prefer Solution 1:

• GA
s in Solution 1 is consistent with DIS estimate at Q2 = 0

• GM
s in Solution 1 is consistent with SAMPLE result at

Q2 = 0.091 GeV2

• GM
s in Solution 1 is consistent with the Lattice QCD

(Leinweber et al.) prediction of GM
s(Q2 = 0) = −0.051±0.021.

Additional measurement (JLab E91-004 or G0-Backward)
needed to determine the correct solution at this Q2.



Combining E734 and G0(Forward)
• First phase of G0 is similar to HAPPEX:  forward electron scattering,
thus little sensitivity to GA

e.

• Get linear combinations of GE
s and GM

s at four Q2 points
(0.45, 0.55, 0.75, 0.95 GeV2) in same range as E734.

• GA
e

• Use a value for GA
e from Zhu et al., OR

• Just set GA
e = 0±1 and live with slightly wider uncertainty band.

• Similar analysis as for HAPPEX will give two solutions at each Q2

point.

• First G0(Backward) measurement (or JLab E91-004 measurement) will
select correct solution set.



0.45 G
eV

2
0.95 G

eV
2

€ 

"Solutions" produced by
forcing the G0 "data" to
go through the origin
(like HAPPEX), and 
using GA

e = 0 ±1.

GE
s +αGM

s = 0 ± β

What it might
look like…



E734 + G0(Forward)
expected

uncertainties
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GA
s

GM
s

GE
s

  

€ 

o   Solution 1
•   Solution 2

   0.45  0.55      0.75        0.95  GeV2

“Data” are clearly arbitrary, but
sizes of uncertainties are not.



A future experiment to determine Δs
Even if the program I have described determines the strange axial form
factor down to Q2 = 0.45 GeV2 successfully, it almost certainly will not
determine the Q2-dependence sufficiently for an extrapolation down to
Q2 = 0.

A new experiment has been proposed to measure elastic and quasi-
elastic neutrino-nucleon scattering to sufficiently low Q2  to measure
Δs directly.

Also, questions remain about the normalization of the E734 data. Most
of their target protons were inside of carbon nuclei, and there was not
much known about nuclear transparency in the mid-1980’s.  The E734
collaboration did make a correction for transparency effects, but this
issue needs to be revisited if we continue to use the E734 data.  (I have
the original E734 simulation code and am working on this project with
a student this summer.)



FINeSSE

Twofold proposal:

1) Improve (with
MiniBooNE)
measurements of
neutrino mixing
phenomena

2) Measure the strange
axial form factor down
to Q2 = 0.2 GeV2



FINeSSE Determination of Δs

€ 

Measure ratio of NC to CC neutrino scattering from nucleons:

               RNC/CC =
σ νp→νp( )
σ νn→ µ−p( )

⇒ Numerator is sensitive to −GA
CC +GA

s( )
⇒ Denominator is sensitive to GA

CConly
⇒ Both processes have unique charged particle
              final states signatures
⇒ Ratio largely eliminates uncertainties in neutrino flux,
              detector efficiency, and nuclear target effects

A 6% measurement of RNC/CC down to Q2 = 0.2 GeV2

provides a ±0.04 measurement of Δs.



In conclusion…
• Get values for all three strange form factors in the range
0.45 < Q2 < 0.95 GeV2 by combining BNL E734 neutrino
scattering data with JLab G0 electron scattering data
(this work available at PRL 92 (2004) 082002 and hep-ex/0310052)

• FINeSSE the job by measuring the NC/CC ratio in
neutrino scattering to sufficiently low Q2 to get all three
strange form factors over the Q2 range 0.2 < Q2 < 1.0 GeV2.

                determine Δs



Non dimenticare di misurare Δs !


