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Near detector physics on the
MiniBooNE beamline

*MiniBooNE beamline and neutrino production

*Proton driver/neutrino superbeam physics

*Non-oscillation physics at a near detector on the
MiniBooNE beamline



High intensity,
neutrino scattering physics

Neutrino energies ~ 1 GeV
light targets
high statistics

*vN elastic scattering.— As of proton

*Neutrino magnetic moment searches
*Cross section measurements
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Fermilab Booster
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Neutrino Production

/

p+Be— ', K' K’

pions and kaons decay
primarily to vu's

itrary units)

10°
- V. 99.9%
K'->puv, 635% & 3
S 212% % '°
L
Intrinsic v, flux is small =
10

compared to i flux

Kll

L
uw—e" v v
e u

=N eV,

v, and v, production

U

Vy
VE

I IS E LR

T - T Ivr

I LR




Approximate event rates at MiniBooNE
—for 5 x 10% protons on target (1-2 years running)

v,, charged current 500,000 events V"X .
As {

Yy Vu

v,, neutral current 70,000 events X
Cross _ i Vi Vy
sections n’ resonance production: 50,000 events 0
neutrino | ” Vi

magnetic v,-¢ elastic scatters 100 events X

moment é e
to do high statistics, non-oscillation physics .....

— put detector at 100 m (as close to target as possible)
— increase beam intensity with new proton driver



Potential proton driver facility
at Fermilab:

*increase beam intensities by x4 - x5

*increase rep rate to 15Hz with beam

*increase energy to 16 GeV

eprovide beam for TeVatron, Main Injector
physics program, and MiniBooNE



As: The strange-quark contribution
to the spin of the proton

Experimental results on strange quarks in the nucleon:
- neutrino DIS measures a non-zero "strange sea"

- polarized-lepton DIS (EMC, SMC, SLAC) say the
nucleon spin carried by strange quarks is non-zero.

As ~ -0.10+0.05 (SMC paper: PR D56, 5330,'97.)

However, model-dependent assumptions (SU(3) , x — 0 extrapolation)
limit conclusive interpretations. (hep-ph/0201179)

VN elastic scattering allows for a theoretically robust,
complementary measurement of As



Measuring As...

The neutrino-nucleon neutral-current process is
sensitive to As:

Nucleon Neutral Weak Current: ] depends on
G,F, F,form factors

/ \.
-G, (@) = ga(q )+ G (q°) F, small, F, measured

in PV e scattering
g, known
(nuclear B decay)

G.'(q’=0) = As

|

vp -> vp NC cross section yields As
but we must deal with cross section systematics...



Measure cross section ratios to determine As...
while minimizing systematic errors

Ratio measurements:

- Ratio of neutral-current elastic scattering on
protons to neutrons:
R(p/n)= o(vp — vp)/c(vn — vn)
is quite sensitive to As due to:
G, =-g,1+G,' , T =+1 proton, -1 neutron

However, the systematic of neutron detection are difficult.

-Ratio of NC elastic scattering to CC scattering:
R(NC/CC)= o(vp, NC)/c(vp, CC)
is somewhat less sensitive to As, but experimentally easier

No systematic error due to the uncertainty in neutrino flux.



Previous measurements:
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A definitive measurement of As
using the MiniBooNE beamline

Goal: o(As) ~ 0.03

—» measure RNC,C(FU(VP—WP)/G(VH—)MP) to 5%

Systematics Checks:
measure RN - t,:w'sr/zai.l_‘ltinf.zutrincos

study R with Q

Need to keep systematic errors low:
- must reduce pion backgrounds



How well can we do with MiniBooNE?

- ~ 30k NC events/year, ~250k CC events/year
(500 ton fiducial vol., 50% eff, Q* = 0.1-1.1 GeV?
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syst‘ewgrs will make a definitive As measurement difficult.

error on efficiency of proton detection in large non-segmented detector



Need a highly segmented large(ish), detector
with intense neutrino flux...

® 100 m from miniBooNE target .
® active target w/tracking (~10 ton)
* (minimal) muon tracking

® particle id (p/n/p/e) for good bekgd sep.
® take advantage of short beam spill/long cycle time




Neutrino-Nucleon Scattering in 10ton detector
on miniBooNE beamline @100m in 1 year
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How does a neutrino magnetic moment
(NMM) arise?
= Minimally extended Standard Model:

— massive Dirac neutrinos can have a non-zero NMM

Neutrinos of mass m,,
— NMM of:
3els Y m,

" — ——m, ~ 3 X 107" up——
o b \,"r'__}ﬂ"l—l J T Il

— SUSY models - left-right supersymmetric models

fy, =534 x 1077 — 107 "%up
fy, = 1.13 x 107 — 107 % pp
o, = 1.9 x 107 2up

—+ Large Extra Dimensions

ty =21.0 x 107 up



Limits set from previous experiments
~+ Electron v magnetic moment
py, $1.5—18 x 1075

e Super K data: shape of recoil electron spectrum

e reactor experiments: combined measurement
Future experiments plan to measure p,, to ~ 107"
~ Muon v magnetic moment
oy < 6.8 % 107,

e LSND experiment: combined measurment for electron and muon
neutrino magnetic moments using total v, ,e elastic cross section.

— Tau v magne;tic moment
oy, < 5.4 x 10 g
e DONUT experiment
— Astrophysical limits

e slow rate of plasmon decay in horizontal branch starsx

e neutrino energy loss rate from supernova 1987ax
= < 10‘12.\”‘3
* model assumptions made in these cases



Conventional method to measure v magnetic
moments

—+ Neutrinos with non-zero ¥ magnetic moment would have an elec-
tromagnetic component to neutrino neutral current cross section.

' &Y

Otot = Oweak T Oem



—Shape of the differential cross section depends upon any
electromagnetic contribution
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F,= Neutrino energy
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Neutrino magnetic moment measurements
at MiniBooNE

100 v — e events with E, = 1 GeV
10 MeV < T, < 1000MeV
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Number of Experiments

Measurements at a near detector
with existing MiniBooNE beam
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at a superbeam facility

15000 v — e events with FE, 1 GeV
| MeV < T, < 1000MeV
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1C. Ankenbrandt et. al.,“Physics study group report on physics potential at FNAL with stronger proton
sources,” in preparation, http://projects.fnal.gov /protondriver/



Lots of interesting physics to be done with
high intensity,
short baseline,
~1 GeV neutrino beams



